118 resultados para CHEMISTRY, MULTIDISCIPLINARY

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The determination of oxygen content, hydrophobicity and reduction efficiency of graphene oxide (GO) are difficult tasks because of its heterogeneous structure. Herein, we describe a novel approach for the detailed understanding of the surface chemistry of GO by studying the interactions between [Ru(bpy)3](2+) and GO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A non-oxidative method based on thiol-ene click chemistry for functionalization of multi-walled carbon nanotube (CNT) was performed in order to improve the interfacial interactions between epoxy matrix and CNT. In this way, the CNT was aminated using 2-aminoethanethiol hydrochloride radicals thermally produced by a peroxide radical initiator. The aminated CNT (CNT-NH2) was characterized by FTIR, TGA, and solubility evaluations, confirming that thiol radicals are successfully grafted onto the CNT surface with a proper yield. Various percentages of pure CNT (p-CNT) and CNT-NH2 were then incorporated into epoxy matrix to evaluate the effect of the functionalization of CNT on thermal, mechanical, and morphological properties. The nanocomposites were characterized by DMA, tensile testing, and TGA. Results showed that glass transition temperature, tensile properties and thermal stability of epoxy nanocomposites containing CNT-NH2 improves significantly compared to those containing unmodified CNT. These results prove the role of amino-functionalization in improving the interfacial adhesion between epoxy and CNT, which was further confirmed by morphological observations of fracture surfaces of the nanocomposites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active sites and the catalytic mechanism of nitrogen-doped graphene in an oxygen reduction reaction (ORR) have been extensively studied but are still inconclusive, partly due to the lack of an experimental method that can detect the active sites. It is proposed in this report that the active sites on nitrogen-doped graphene can be determined via the examination of its chemical composition change before and after ORR. Synchrotron-based X-ray photoelectron spectroscopy analyses of three nitrogen-doped multilayer graphene samples reveal that oxygen reduction intermediate OH(ads), which should chemically attach to the active sites, remains on the carbon atoms neighboring pyridinic nitrogen after ORR. In addition, a high amount of the OH(ads) attachment after ORR corresponds to a high catalytic efficiency and vice versa. These pinpoint that the carbon atoms close to pyridinic nitrogen are the main active sites among the different nitrogen doping configurations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replacement of precious Pt catalyst with cost-effective alternatives would be significantly beneficial for hydrogen production via electrocatalytic hydrogen evolution reaction (HER). All candidates thus far are exclusively metallic catalysts, which suffer inherent corrosion and oxidation susceptibility during acidic proton-exchange membrane electrolysis. Herein, based on theoretical predictions, we designed and synthesized nitrogen (N) and phosphorus (P) dual-doped graphene as a nonmetallic electrocatalyst for sustainable and efficient hydrogen production. The N and P heteroatoms could coactivate the adjacent C atom in the graphene matrix by affecting its valence orbital energy levels to induce a synergistically enhanced reactivity toward HER. As a result, the dual-doped graphene showed higher electrocatalytic HER activity than single-doped ones and comparable performance to some of the traditional metallic catalysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigation of oxidation resistance of two-dimensional (2D) materials is critical for many of their applications because 2D materials could have higher oxidation kinetics than their bulk counterparts due to predominant surface atoms and structural distortions. In this study, the oxidation behavior of high-quality boron nitride (BN) nanosheets of 1-4 layers thick has been examined by heating in air. Atomic force microscopy and Raman spectroscopy analyses reveal that monolayer BN nanosheets can sustain up to 850 °C, and the starting temperature of oxygen doping/oxidation of BN nanosheets only slightly increases with the increase of nanosheet layer and depends on heating conditions. Elongated etch lines are found on the oxidized monolayer BN nanosheets, suggesting that the BN nanosheets are first cut along the chemisorbed oxygen chains and then the oxidative etching grows perpendicularly to these cut lines. The stronger oxidation resistance of BN nanosheets makes them more preferable for high-temperature applications than graphene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, a novel EpCAM aptamer (SYL3C)-DIBO-AF594 fluorescent conjugate was synthesised by bioorthogonal chemistry utilizing a strain promoted alkyne-azide cycloaddition (copper free click) reaction (SPAAC). The ligation efficiency of SPAAC was improved by freeze-thaw cycles. The obtained conjugate showed target specific binding and aided in the imaging of various EpCAM positive cancer cell lines like MCF7, MDAMB453, Weri-RB1 and PC3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma, generated in liquid at atmospheric pressure by a nanosecond pulsed voltage, was used to fabricate hybrid structures from boron nitride nanotubes and gold nanoparticles in deionized water. The pH was greatly reduced, conductivity was significantly increased, and concentrations of reactive oxygen and nitrogen species in the water were increased by the plasma treatment. The treatment reduced the length of the nanotubes, giving more individual cuplike structures, and introduced functional groups onto the surface. Gold nanoparticles were successively assembled onto the functionalized surfaces. The reactive species from the liquid plasma along with the nanosecond pulsed electric field seem to play a role in the shortening and functionalization of the nanotubes and the assembly of gold nanoparticles. The potential for targeted drug delivery was tested in a preliminary investigation using doxorubicin-loaded plasma-treated nanotubes which were effective at killing ∼99% of prostate cancer cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable, safe and high performance solid electrolytes are a critical step in the advancement of high energy density secondary batteries. In the present work we demonstrate a novel solid electrolyte based on the organic ionic plastic crystal (OIPC) triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI). With the addition of 4 mol% LiFSI, the OIPC shows a high conductivity of 0.26 mS cm-1 at 22 °C. The ion transport mechanisms have been rationalized by compiling thermal phase behaviour and crystal structure information obtained by variable temperature synchrotron X-ray diffraction. With a large electrochemical window (ca. 6 V) and importantly, the formation of a stable and highly conductive solid electrolyte interphase (SEI), we were able to cycle lithium cells (LiLiFePO4) at 30 °C and 20 °C at rates of up to 1 C with good capacity retention. At the 0.1 C rate, about 160 mA h g-1 discharge capacity was achieved at 20 °C, which is the highest for OIPC based cells to date. It is anticipated that these small phosphonium cation and [FSI] anion based OIPCs will show increasing significance in the field of solid electrolytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virgin olive oil (VOO) is credited as being one of many healthful components of the Mediterranean diet. Mediterranean populations experience reduced incidence of chronic inflammatory disease states and VOO is readily consumed as part of an everyday dietary pattern. A phenolic compound contained in VOO, named oleocanthal, shares unique perceptual and anti-inflammatory characteristics with Ibuprofen. Over recent years oleocanthal has become a compound of interest in the search for naturally occurring compounds with pharmacological qualities. Subsequent to its discovery and identification, oleocanthal has been reported to exhibit various modes of action in reducing inflammatory related disease, including joint-degenerative disease, neuro-degenerative disease and specific cancers. Therefore, it is postulated that long term consumption of VOO containing oleocanthal may contribute to the health benefits associated with the Mediterranean dietary pattern. The following paper summarizes the current literature on oleocanthal, in terms of its sensory and pharmacological properties, and also discusses the beneficial, health promoting activities of oleocanthal, in the context of the molecular mechanisms within various models of disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textiles are commonly made from intimate blends of polyester and cotton, which makes recycling very difficult. We report for the first time the use of ionic liquid in the separation of polyester cotton blends. By selective dissolution of the cotton component, the polyester component can be separated and recovered in high yield. This finding presents an environmentally benign approach to recycling textile waste. © 2014 The Royal Society of Chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a new approach to manipulate the selective emission in mixed electrogenerated chemiluminescence (ECL) systems, where subtle changes in co-reactant properties are exploited to control the relative electron-transfer processes of excitation and quenching. Two closely related tertiary-amine co-reactants, tri-n-propylamine and N,N-diisopropylethylamine, generate remarkably different emission profiles: one provides distinct green and red ECL from [Ir(ppy)3] (ppy=2-phenylpyridinato-C2,N) and a [Ru(bpy)3](2+) (bpy=2,2'-bipyridine) derivative at different applied potentials, whereas the other generates both emissions simultaneously across a wide potential range. These phenomena can be rationalized through the relative exergonicities of electron-transfer quenching of the excited states, in conjunction with the change in concentration of the quenchers over the applied potential range.